Summary: Background: Curcuminoid genes have an important role in the biosynthesis of curcumin, a valuable bioactive compound, in Curcuma species. However, there have not been any reports of these genes in Curcuma zedoaria. Objective: The present work reports on the isolation of genes encoding enzymes in curcuminoid metabolic pathway and their expression in C. zedoaria. Method: The primers were designed from untranslation regions of DCS, CURS1, CURS2 and CURS3 genes which are involved in curcuminoid biosynthesis in C. longa to isolate the corresponding fulllength genes in C. zedoaria. RT-PCR amplification and HPLC analysis are used to estimate the expression of genes and biosynthesis of curcumin in both rhizome and callus. Results: The results showed that all four genes from C. zedoaria (named CzDCS, CzCURS1, CzCURS2 and CzCURS3) and C. longa have a high identity (approximately 99%) and lengths of genes from C. zedoaria are 1382, 1240, 1288 and 1265 nu, respectively. CzCURS1, 2 and 3 genes have one intron while CzDCS has two introns. RT -PCR amplification indicated that curcuminoid genes expressed mRNA in rhizome and callus of C. zedoaria. Curcumin, a major component of curcuminoids, was also found in callus by HPLC analysis. Conclusion: The sequence information of DCS and CURS1-3 genes in C. zedoaria will be very valuable for a subsequent study on the effects of elicitors on the transcription of genes involved in curcuminoid biosynthesis pathway.
Type: SCOPUS listed journals
Author: Trương Thị Phương Lan, Nguyễn Đức Huy, Nguyễn Ngọc Lương, Nguyễn Văn Nghi, Trịnh Hữu Tấn, Lê Viết Quân, Nguyễn Hoàng Lộc
Unit: Director board of Institute
Journal:Current Pharmaceutical Biotechnology (1389-2010, E-ISSN: 1873-4316)
Issue, Number, Pages19, 9, DOI : 10.2174/138920
ISSN/ISBN:1389-2010
Impact factor:
Score according to the decision of the National Council for Professor in Academic statue:
Year of publication: 2018
Attached files:
Viewed: 42
Update time: