See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321969067

Biological Resources for Development of Aquaculture in Thi Nai Lagoon, Vietnam

Article in Journal of Agricultural Science and Technology A · October 2017

DOI: 10.17265/2161-6256/2017.10.013S

citation: 0	ŝ	READS 36	
4 autho	rs, including:		
	Kieu Thi Huyen Hue University 4 PUBLICATIONS 0 CITATIONS SEE PROFILE		Tran Vinh Phuong Hue University 8 PUBLICATIONS 0 CITATIONS SEE PROFILE
	Linh Quang Nguyen Hue University 60 PUBLICATIONS 127 CITATIONS SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Project

ACCCU PROJECT View project

Influence of different housing systems approach to sow reproductive performance and growth of suckling piglets in Thua Thien Hue View project

Biological Resources for Development of Aquaculture in Thi Nai Lagoon, Vietnam

Kieu Thi Huyen¹, Tran Vinh Phuong², Phan Thi Le Anh³ and Nguyen Quang Linh²

1. Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue City 530000, Vietnam

2. Department of Nutritional Diseases and Systems for Livestock and Aquaculture, Institute of Biotechnology, Hue University, Phu

Thuong, Phu Vang, Thua Thien Hue 530000, Vietnam

3. Central Highlands Aquaculture Center, Research Institute for Aquaculture III, Buon Ma Thuot City 630000, Vietnam

Abstract: The diversity of aquatic resources in Thi Nai Lagoon decreased due to the lack of harmonious use and integrated long-term planning on the use of living resources. There remained a lack of mechanisms and regulations for coordination of activities in the lagoon by Binh Dinh Provincial People's Committee (PPC). The aim of the study was to investgate the aquatic species and water quality in Thi Nai Lagoon, Vietnam. Data were collected at 23 different points on Thi Nai Lagoon, with three replicates at each point. There were 106 species of fish presented on the lagoon and in different sizes, including 17 mollusc species and 15 crustaceans species. In the dry season, there were 167 phytoplankton species in five divisions, 10 classes in 39 orders in 59 families including 77 genus. Zooplankton had eight chordata in 10 classes of 18 orders including 44 families, 64 genus and 102 species. Arthropoda had the largest number of species, 78 species, accounting for 76.5% of total species. In the rainy season, only 48 species of Arthropoda, Cnidaria, Annelida, Chaetognatha and Rotifer were affected and some were not encountered in the wet season, such as mollusca and chordata. While water quality variables were still good for aquaculture, within permitted limits of TCVN standard and criteria, there were still problems caused by production discharges and living activities of inhabitants around the lagoon, such as sedimentary matters.

Key words: Thi Nai Lagoon, biodiversity, resources, water quality and interventions.

1. Introduction

Thi Nai Lagoon has an area of 5,060 ha, located at the river mouths of Kon and Ha Thanh, the two big rivers of Binh Dinh province, with a wide tidal flat. The ecosystem in the lagoon is quite rich and diverse. Thi Nai Lagoon has 1,000 ha of mangroves and 200 ha of seagrass, favorable for the growth and development of aquatic resources [1, 2]. The lagoon housed more than 119 species of fish, 14 species of shrimp and dozens of other valuable aquatic species [3-5]. Furthermore, Thi Nai Lagoon has been the source of income of thousands of inhabitants living along the lagoon [4-6]. Tuy Phuoc coastal region had a strong marine economy and had witnessed rapid growth of fish capture, aquaculture and tourism,

which was a sign of growth of the whole economy. However, the lack of good planning, the imbalance of investment as well as the diversity of economic actors and livelihoods on the lagoon caused the imbalance of the ecosystems. The weak management of biological resources and inadequate protection of the coastal environment also hindered effective use and sustainable development of the coastal area of Binh Dinh province and worsened the current problems [4-6]. The existing problems included: (1) lack of integrated long-term planning on the use of living resources and harmonious management between coastal and lagoon land uses; (2) lack of mechanisms and regulations for coordination among agencies under the local government-Provincial People's Committee (PPC); (3) lack of an appropriate management approach, such as community-based integrated resources use and management, which has

Corrsponding author: Nguyen Quang Linh, assistant professor, research field: animal nutrition.

2. Investigation Site and Methods

2.1 Study Site and Time

The investigation site in the study covers the entire watershed of Thi Nai Lagoon and the livelihood activities of the villagers along the lagoon. Investigation was conducted from October 2015 to February 2016 (rainy season and collected in November) and March to September 2016 (dry season and collected in June).

2.2 Variables Measured

There were 23 points on the lagoon, positioned and marked by GPS (Fig. 1) and stated for sample collection during two seasons (dry and rainy). In each point, three samples were collected for water quality and

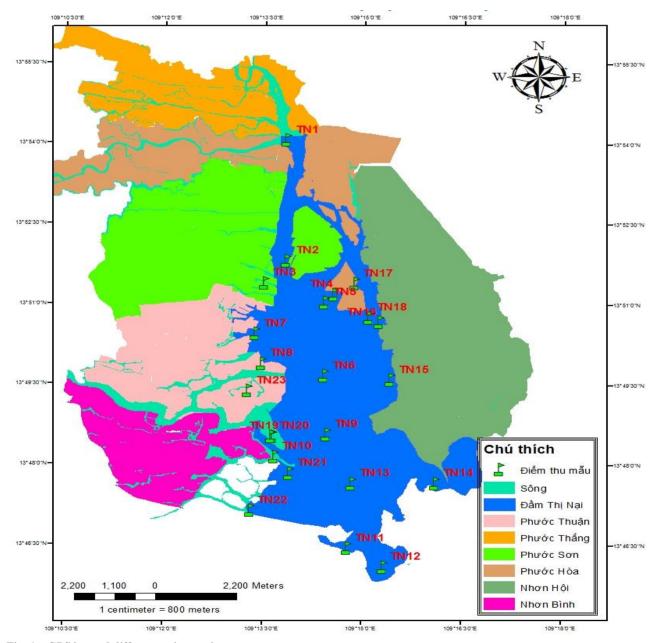


Fig. 1 GPS located different points on lagoon system.

aquatic resources analysis (assessment of different species and biodiversity) on the system. There were total 138 samples collected and analyzed.

Specimens were collected directly at the sampling sites (Fig. 1 and Table 1) by boat. Some samples were collected at local markets by fishermen caught in Thi Nai Lagoon. Species composition was determined and classified on the basis of morphology characteristics and the documents of Khang [7], Phu [8] and Dinh et al. [9].

The water quality including temperature, clarity, turbidity, conductivity (EC), total solids, total dissolved solids (TDS), pH, salinity (∞) and oxygen demand (DO) was determined by the multifunctional environmental meter (Fig. 2). The content of CaCO₃, HCO₃⁻, NO³⁻, NO₂, NH₄⁺, N, biological oxygen demand (BOD₅), heavy metals, organic plant protection chemicals and total coli form were analyzed in the laboratory. Before that, the water

sample would be stored at 4 $\,$ °C. Then data were analyzed by SPSS 10.0 for average of variables.

3. Results and Discussion

3.1 Biodiversity of Thi Nai Lagoon

There were 106 species of fish presented in the lagoon, of which 10 species were often caught by local fishermen using traditional gears, such as grill nets, bottom nets and enclosed nets (Table 2). Some potential aquaculture species included: *Therapon jarbua*, *Mugil cephalus*, *Mulgil kelaartii*, *Cynoglossus puncticeps*, *Caranx carangus*, *Arothron immaculatus*, and a new species *Siganus oramin*.

According to the survey conducted, there were 17 species of mollusks and 15 species of crustaceans recording in Thi Nai Lagoon area (Table 3). Clam oil (*Meretrix meretrix*), bamboo clam (*Meretrix lyrata*) and green mussel (*Perna viridis*) are the most popular

Table 1 The 23 different points located by GPS on Thi Nai Lagoon.

C. J.	GPS: Cordinates		Compling and places		
Code	Latitude	Longitude	—Sampling and places		
TN1	13 °54′03.8″	109 °13′49.8″	Water, fish, bivalvia, crustacea at Kon river mouth		
TN2	13 °51′48.5″	109 °13′50.4″	Water, fish, bivalvia, crustacea at Chim dunes		
TN3	13 \$1'23.6"	109 °13′30.2″	Water, fish, bivalvia, crustacea in aquaculture canals		
TN4	13 \$1'10.9"	109 °14′33.3″	Water, fish, bivalvia, crustacea at Trang dunes-Phuoc Hoa		
TN5	13 \$1'02.0"	109 °14′25.2″	Water, fish, bivalvia, crustacea and sea grass		
TN6	13 %49′39.61″	109 °14′24.57″	Water, fish, bivalvia, crustacea at the middle of lagoon		
TN7	13 °50′26.6″	109 °13′22.2″	Sea grass, water, fish, bivalvia, crustacea		
TN8	13 %49′53.4″	109 °13′28.1″	Water, fish, bivalvia, crustacea, seagrass at mangroves		
TN9	13 '48'33.94"	109 °14′27.56″	Water, fish, bivalvia, crustacea under Thi Nai brigde		
TN10	13 %48′08.7″	109 °13'40.2″	Water, fish, bivalvia, crustacea at Ha Thanh river mouth		
TN11	13 %46'26.07"	109 °14'46.46″	Water, fish, bivalvia, crustacea at fishing port		
TN12	13 %46'5.51"	109 °15'19.01″	Water, fish, bivalvia, crustacea at estuaries		
TN13	13 %47′38.86"	109 °14′50.68″	Water, fish, bivalvia, crustacea at lagoon middles in south		
TN14	13 %47'39.52"	109 °16'6.15″	Water, fish, bivalvia, crustacea at water creeks		
TN15	13 %49'35.6"	109 °15′25.4″	Water, fish, bivalvia, crustacea at aquaculture areas		
TN16	13 °50'40.2″	109 °15'14.9″	Water, fish, bivalvia, crustacea at aquaculture areas		
TN17	13 °51′23.2″	109 °14′52.0″	Water, fish, bivalvia, crustacea at mangroves		
TN18	13 °50'45.4″	109 °15′05.9″	Seagrass, water, fish, bivalvia, crustacea		
TN19	13 '48'31.58"	109 °13′38.94″	Seagrass, water, fish, bivalvia, crustacea		
TN20	13 '48'31.50"	109 °13′37.64″	Seagrass, water, fish, bivalvia, crustacea		
TN21	13 %47'50.9"	109 °13′54.6″	Seagrass, water, fish, bivalvia, crustacea		
TN22	13 %47'8.13"	109 °13′18.96″	Seagrass, water, fish, bivalvia, crustacea at Ha Thanh river		
TN23	13 %49′22.46"	109 °13'15.91″	Seagrass, water, fish, bivalvia, crustacea at mangroves		

Fig. 2 The multifunctional environmental meter.

and high economic value. In 15 crustacean species identified (Table 3), some have high economic value, such as tiger shrimp, earth shrimp, blue crabs and green crabs, etc.. And there are some species famous among tourists, such as *Ranina ranina*, *Penaeus monodon*, *Perna viridis*, *Meretrix meretrix*, especially cultured in brackish water due to their sweet and aroma, and thus it would be very favorable to develop culture using enclosed net or pond system.

No.	English name	Scientific name	No.	English name	Scientific name
1	Fish sand	Eugomphodus tricuspidatus	54	Pink fish with silver stripes	Lutjanus argentimaculatus Forssk å
2	Stingray	Dasyatis varidens Garman	55	Pink spot fish	Lutjanus russelli Bleeker
3	Fish porridge	Elops saurus Linnaeus	56	Pink goldfish with matte stripes	Lutjanus lineolatus R üppell
4	Big porridge fish	Megalops cyprinoides Broussonet	57	Star fish	Pomadasys hasta Bloch
5	Shell fish	Escualosa thoracata Val.	58	Long summer snout	Letherinus miniatus Bloch & Sch.
6	Green scales	Herlotsichthys quadrimaculatus Ruppell	59	Summer fish scales red	Lethrinus haematopterus T. & S.
7	Herring	Sardinella sindensis Day	60	Silverfish	Argyrosomus argentatus Houttuyn
8	Sardines dots	Konosirus punctatus Tem. & Sch.	61	Silver thieves	Nibea coitor B. & H.
9	Fish tire	Thryssa hamiltonii Gray	62	Yellow goldfish	Upeneus vittatus Forsbcal
10	Indian anchovy	Stolephorus indicus Van Hasselt	63	Catfish	Caranx carangus Bloch
11	Japanese anchovy	Stolephorus japonica Schlegel	64	Black fins	Carangoides praeustus Bennett
12	Yellow snapper	Setipinna taty Cuv. & Val.	65	Eastern raccoon fish	Scomberoides orientalis T. & S.
13	Snook	Chanos chanos Forskal	66	Orange striped fish	Seriola dumerili Risso
14	Sliced fish	Notopterus notopterus Pallas	67	Large paralysis	Leiognathus equulus Forskal
15	Trash fish	Saurida tumbil Bloch & Schneider	68	Parrotfish	Leiognathus ruconius H.
16	Crucian carp	Carassius auratus Linnaeus	69	Green parrot	Leiognathus splendens Cuv.
17	Carp	Cyprinus carpio Linnaeus	70	Long spiny goby	Gerres filamentosus Cuv.
18	Swishfish	Leiocassis truncatus Regan	71	Silverfish	Monodactylus argentus Linnaeus
19	Fish	Plotosus angullaris Bloch		Pangasius fish	Platax orbicularis Forskal
20	Catfish	Clarias sp.	72	Brown fish	Scatophagus argus Linneus
21	Chinese fish	Arius sinensis Lac.	73	Butterfly fish with a striped tail	Chaetodon bellamaris Saele
22	Pla yang wave	Echidna polyzona Rich	74	Zebra butterfly fish	Parachaetodon ocellatus Cuv. & Val.
23	Giant calendar fish	Evenchelys macrurus Bleeker	75	3-striped fish	Aphyosemion trilineatus Wang
24	Worm eels	Moringua macrocephalus Bleeker	76	Fish injections	Leptoscarus vaigiensis Q. & G.
25	Fish teeth	Pisodonophis boro H. & B.	77	Lure fish	Callionymus hindsii Wang
26	Snout	Ophichthys apicalis Bennett	78	Fish balls	Siganus guttatus Bloch
27	Pineapple fish	Muraenesox cinereus Forskal	79	Blue-spotted rabbitfish	Siganus javus Linnaeus
28	Tail tailed fish	Tylosurus strongylurus Van Hasselt	80	Fish pits	Trichiurus haumela Forslcal
29	Mackerel	Hemirhamphus sinensis Gunther	81	Anabas	Anabas testudineus Bloch
30	Needle fish	<i>Hemirhamphus gaimardi</i> Cuv. & Val.	82	Salmon	Bostrichthys sinensis Lac.
31	Swimmer fish fins	Zenarchopterus ectuntio Ham.	83	Humpback fish	Butis butis Buch. et Ham.
32	Lime fish	Syngnathus pelagicus Linnaeus	84	Goblin eye valve	Oxyurichthys tentacularis Cuv. & Val.

 Table 2
 Composition of fish in Thi Nai Lagoon (10/2015 and 6/2016).

No.	English name	Scientific name	No.	English name	Scientific name
33	Seahorse	Hippocampus histrix Kaup	85	Goby ash	Acentrogobius caninus Cuv. & Val.
34	Striped	Panchax melastigma McClelland	86	Griffon sand	Glossogobius giusi H. & B.
35	Barracuda	Sphyrena barracuda Walbaum	87	Goby ginger eyes	Glossogobius biocellatus Cuv. & Val
36	Fish object	Mulgil cephalus Linnaeus	88	Goby fish clouds	Ctenogobius criniger Cuv. & Val.
37	Mullet leaves	Mulgil kelaarti Gunther	89	Gobies java	Stigmatogobius javaneus Bleeker
38	Spiny fish	Mulgil strongylocephalus Richardson	90	Muddy fish	Periophthalmus cantonensis Osbeck
39	Tropical fish	Atherina duodecima C. & V.	91	Blind spot flower	Dendrochirus zebra Cuv. & Val.
40	Fish all over eyes	Atherina forskali Ruppell	92	Milan fish thorn	Vespicula trachinoides Cuv. & Val.
41	Seabass	Lates calcarifer Bloch	93	Chinese walrus	Vespicula sinensis Bleeker
42	Fish head bare	Ambassis gymnocephalus Lacepede	94	Indian bottfish	Platycephalus indicus Linnaeus
43	Fish painted kop	Ambassis kopsi Bleeker	95	Japanese fish	Inegocia japonica Tilesius
44	Halibut	Siniperca whiteheadi Boulenger	96	Bottlenose fish	Inegocia spinosus T. & S.
45	Grouper flies	Epinephelus tauvina Forskal	97	Black tilapia	Oreochromis mossambica Peters
46	Spiny groupers	<i>Epinephelus malabaricus</i> Bloch & Sch.	98	Nile tilapias	Oreochromis niloticus Linnaeus
47	Fish sand	Therapon jarbua Forkal	99	Flounder blisters in the middle	Pseudorhombus negletus Bleeker
48	Fish scales large	Therapon theraps Cuv. & Val.	100	Striped fish	Cynoglossus puncticeps Rich
49	Small fish scales	Therapon ruta Cuv. & Val.	101	Buffalo tongue	Cynoglossus monopus Bleeker
50	Fish paint	Apogonnichthis brachygrammus Jenkins	102	3-spiny puffer fish	Triacanthus brevirostris Sch.
51	Fish painted on tails	Apogon amboinensis Bleeker	103	Horned hornbill	Lactoria diaphana Bloch & Sch.
52	Silver fish	Sillago sihama Forkal	104	Turtle-shell turtle	Chelonodon patoca Hamilton
53	Stingray fish	Sillago maculata Q. & G.	105	Mussel topper	Arthron immaculatus Bloch & Sch.
			106	Grilled puffer fish	Arothron reticularis Bloch & Sch.

(Table 2 continued)

 Table 3
 Composition of mollusc and crustaceans species in Thi Nai (10/2015 and 6/2016).

No.	English name	Scientific name	No.	English name	Scientific name	
	Molluscs Crustaceans					
1	Clam oil	Meretrix meretrix	18	Black tiger shrimp	Penaeus monodon	
2	Bamboo clam	Meretrix lyrata	19	Fried shrimp	Penaeus semisulcatus De Haan	
3	Otters	Anadara subcrenata (Lischke, 1869)	20	Silver Shrimp	Penaeus merguiensis	
4	Phi (sea jelly)	Sanguinolaria diphos (Linne ù, 1771)	21	Smaill shrimp	Metapenaeus ensis	
5	Eunuch dress	Sanguinolaria sp.	22	Mud crab	<i>Scylla paramamosain</i> (Estampador, 1949)	
6	White cry, round spell	Placuna placenta (Linneù, 1758)	23	Intestine	Acetes japonicus (Kishinouye, 1905)	
7	Black pepper	Placuna sp.	24	Shrimp peeled in the bowl	<i>Oratosquilla oratoria</i> (de Haan, 1844)	
8	Green mussel	Perna viridis	25	Blue crabs	Portunus pelagicus (Linnaeus, 1766)	
9	Black spot	Xenostropus atrata (Lischke, 1871)	26	Ghe ïaphinit	Charybdis affinis (Dana, 1852)	
10	Clear	Glauconomya chinensis (Gray, 1828)	27	Crab cross	Charybdis feriata (Linnaeus, 1758)	
11	Almost belcheri	Crassostrea belcheri (Sowerby, 1871)	28	Spotted mussels, sand crabs	Portunus trituberculatus (Mier, 1876)	
12	Big wheel bolt	Architectonica maxima (Philippi, 1849)	29	Heleri crabs	<i>Charybdis helleri</i> (A. M. Edwards, 1867)	
13	Snail pile	Cymatium pileare (Linne ù, 1758)	30	Shady	Varuna litterata (Fbricius, 1798)	
14	Snail shell	Cymatium lotorium (Linne ù, 1758)	31	Sliding door	Scylla olivacea	
15	Clamshell	Tapes literatus (Linne ù, 1758)	32	King crab	Ranina ranina	
16	Ngao Hian	Marcia hiantina (Lamarck, 1818)				
17	Osteoarthritis rapi	Rapana rapiformis (Born, 1778)				

3.2 Water Quality in Thi Nai Lagoon

The data in Table 4 showed that in Thi Nai coastal area, the average value of environmental parameters in rainy season, such as temperature, clarity, conductivity (EC), total solids, pH, CaCO₃ concentration and HCO_3^- , are higher than that in the dry season 2016. Average concentrations of NO₃ and NO₂ are not found in water quality samples in Thi Nai Lagoon. However, the average values of some parameters, such as turbidity, TDS, DO, NH_4^+ , total N, total P, BOD₅ and total coliform, in the rainy season in 2015 are

significantly higher than that in the dry season 2016. For example, NH₄⁺ is only determined in the rainy season with 0.18 \pm 0.009 mg/L. Total N in the rainy season 2015 is 5.0 \pm 0.7 mg/L which is much higher than 0.73 \pm 0.12 mg/L in the dry season 2016. Similarly, P of the rainy season in 2015 is 10 times higher than that in the dry season of 2016 (1.5 \pm 0.1 mg/L and 0.14 \pm 0.03 mg/L, respectively). BOD₅ also shows a large difference between the two seasons with the respective values of 5.4 \pm 4.3 mg/L and 0.83 \pm 0.55 mg/L. There is very high number of total coliform

Table 4 Fluctuation of environmental parameters in the Thi Nai Lagoon.

	Unit	Average (min-max)		QCVN08-MT:2015/BTNMT [10]			QCVN38:2	QCVN10-M	
Factors		Raining season 2015	Dry season 2016	A1	A2	B1	B2	011/BTNM T [11]	T:2015/BTN MT [12]
Temperature	C	25.9 ±1.14 (24.9-26.9)	27.8 ±0.8 (27.0-28.5)						30
Clarity	cm	90.0 ±56.6 (50.0-130.0)	113 ±56.9 (50.0-160.0)						
Turbidity	NTU	17.35 ± 2.05 (15.9-18.8)	9.36 ±7.96 (12.0-17.1)						
Conductivity (EC)	µS/cm	16.9 ± 23.8 (0.1-33.7)	$\begin{array}{c} 19.5 \pm 20.1 \\ (0.1 \text{-} 40.3) \end{array}$						
Total solids	mg/L	10.1 ± 4.2 (0.1-20.2)	13.2 ± 12.5 (0.06-25.0)					1,000	
Dissolved (TDS)	mg/L	4.2 ± 4.8 (0.8-7.6)	3.5 ± 2.9 (0.5-6.4)						
pН		7.08 ± 2.22 (5.51-8.65)	7.6 ± 0.7 (7.0-8.4)	6.5-8.5	6.5-8.5	5.5-9.0	5.5-9.0		6.5-8.5
S‰	ppt	$\begin{array}{c} 10.8 \pm 0.8 \\ (0.0\text{-}21.5) \end{array}$	$\begin{array}{c} 13.7 \pm 13.3 \\ (0.0\text{-}26.5) \end{array}$						
CaCO ₃	mg/L	98.5 ±12.7 (89.5-107.4)	$113.4 \pm 10.4 \\ (107.4-125.3)$						
HCO ₃ ⁻	mg/L	119.9 ± 15.4 (109.0-130.8)	138.1 ±12.6 (130.0-152.6)						
DO	mg/L	6.75 ±1.77 (5.5-6.5)	4.5 ± 1.0 (3.5 - 5.5)	≥ 6	\geq 5	≥ 4	≥ 2	\geq 4	\geq 5
NO_3^-	mg/L	-	-	2	5	10	15	5	-
NO_2	mg/L	-	0	0.01	0.02	0.04	0.05	0.02	-
${\rm NH_4}^+$	mg/L	0.18 ± 0.09 (0.00-0.25)	0	0.10	0.20	0.50	1.00	1.00	0.1-0.5
Total N	mg/L	5.0 ±0.7 (4.5-5.0)	$\begin{array}{c} 0.73 \pm 0.12 \\ (0.62 \text{-} 0.86) \end{array}$						
Total P	mg/L	1.5 ± 0.1 (1.4-1.6)	$\begin{array}{c} 0.14 \pm 0.03 \\ (0.11 \text{-} 0.16) \end{array}$						
BOD ₅	mg/L	5.4 ±4.3 (2.3-8.4)	0.83 ± 0.55 (0.3-1.4)	4.00	6.00	15.00	25.00	-	-
Total coliform	MPN/100 mL	7,300 ±5,233 (3,600-11,000)	161.7 ±73.2 (95.0-240.0)	2,500	5,000	7,500	10,000	-	1,000

A1: water quality is well used for domestic water supply and other purposes; A2: water quality is good for domestic water supply, but suitable treatment technology must be applied; conservation of aquatic plants and animals; B1: used for irrigation or other irrigation purposes with similar water quality requirements; B2: waterways and other purposes with low quality water requirements.

 $(7,300 \pm 5,233 \text{ MPN}/100 \text{ mL})$ in the rainy season in 2015, whereas in the dry season 2016 only 161.7 \pm 73.2 MNP/100 mL. They were within the permitted limits of QCVN08-MT:2015/BTNMT [10], QCVN10-MT:2015/BTNMT [12] and QCVN38:2011/BTNMT [11]. Thus, the monitoring results showed that the seawater in Thi Nai Lagoon showed signs of slight organic pollution (especially nitrogenous compounds) and micro pollution.

Furthermore, the value of the environmental parameters has a relatively large variation between sampling sites. However, these values are within the limits of Vietnamese water quality standards, such as the seawater level of Thi Nai Lagoon was relatively high. In the rainy season, it ranged from 50.0 cm to 250.0 cm with average 137.5 cm, while in the sunny season on average 256.7 cm. Turbidity in the rainy season ranged from 2.9 NTU to 5.8 NTU with average 4.35 NTU, while in the dry season, ranged in 12.7-16.5 NTU with average 14.70 NTU. TDS were very low. In the rainy season, it fluctuated from 14.0 mg/L to 25.4 mg/L with average 19.7 mg/L, whereas, in the sunny season, fluctuated in 12.1-13.2 mg/L with 12.6 mg/L on average. The depth varied from 0.50 m to 50.00 m. Flow velocity varied from 0.00 m/s to 0.46 m/s. EC conductivity varied from 0.08 µS/cm to 40.30 µS/cm. TDS varied from 0.06 mg/L to 25.00 mg/L. It was much lower than the limit (1,000 mg/L) allowed under QCVN38:2011/BTNMT [11]. The temperature of the lagoon was within the allowed limits for culture shrimp under QCVN02-19:2014/BNN&PTNT (national technical regulation on water-based shrimp culture facilities: conditions for ensuring verterinary hygiene, environmental protection and food safety) [13]. Temperature ranged from 30.04 ℃ to 33.85 ℃. Clear height varied from 50.00 cm to 130.00 cm, within the QCVN02-19:2014/BNN&PTNT limits by [13]. Turbidity varied from 1.20 NTU to 17.10 NTU with average 9.78 NTU. Turbidity standards are not specified in current standards or quality standards for aquatic products, but according to the document by Le Cat et al. [14], turbidity below 45 NTU does not affect shrimp or fish. As such, turbidity levels in the Thi Nai Lagoon were still within the acceptable limits for aquaculture operations. The average pH value was 7.17 and varied from 6.10 to 8.20. Thus, according to QCVN02-19:2014/BNN&PTNT [13], Thi Nai Lagoon pH was still within the acceptable limits. Salinity fluctuations ranged from 0.00% to 26.30 %. The area of Kin river mouth was very low. Ouy Nhon estuary area had the highest salinity. Alkalinity varied from 50.00 mg/L to 160.00 mg/L and is within the limit of QCVN02-19:2014/BNN&PTNT [13]. DO content varied from 3.55 mg/L to 8.92 mg/L and is still within the limit of QCVN02-19:2014/BNN&PTNT [13]. The content of NH₃ NO₃, and BOD₅ were very low, within the limit of OCVN08-MT:2015/BTNMT (national technical regulation on surface water quality, column A2) [10]. The total density of coliform varied from 95.00 MPN/100 mL to 240.00 MPN/100 mL. This density was quite low as compared to the limit of OCVN08-MT:2015/BTNMT (column A2) [10]. Organic carbon content varied from 0.20% to 2.20% of dry land, with 1.07% of dry land on average. Nitrogen content varied from 0.02% to 0.06% of dry land and phosphorus varied from 0.03% to 0.08% of dry matter.

On the other hand, while most of the environmental parameters are within the safe limits, the values of some parameters exceed the limits, in the rainy season 2015, included:

(1) Average NH_4^+ content (0.18 mg/L) with fluctuating from 0.0 mg/L to 0.250 mg/L. It exceeded the limit allowed under QCVN08-MT:2015/BTNMT (column A1: 0.1 mg/L and aquaculture: 0.1 mg/L).

(2) BOD₅ average (5.4 mg/L), fluctuating from 2.3 mg/L to 8.4 mg/L. It exceeded the limit allowed under QCVN08-MT: 2015/BTNMT (column A1: 4 mg/L; A2: 6 mg/L).

(3) The average content of coliform (7,300 MPN/100 mL), ranging in 3,600-11,000 MPN/100 mL. It

Es stans	TT:4	Average	QCVN38:2011/BTNMT		
Factors	Unit	Rainy season 2015	Dry season 2016	[11]	
Arsenic (As)	mg/kg dry soil	0.25 ±0.15 (0.12-0.41)	$0.26 \pm 0.06 \; (0.20 \text{-} 0.32)$	41.60	
Cadmium (Cd)	mg/kg dry soil	0.15 ±0.15 (0.02-0.31)	$0.17 \pm 0.03 \; (0.15 \text{-} 0.20)$	4.20	
Lead (Pb)	mg/kg dry soil	$2.20 \pm 0.50 \; (1.70 \text{-} 2.70)$	2.91 ±1.20 (1.94-4.26)	112.00	
Copper (Cu)	mg/kg dry soil	19.57 ±0.60 (19.00-20.20)	17.64 ±8.82 (8.80-26.43)	108.00	
Chlordane	µg/kg	0.116 ±0.281 Non (0-0.980)	Non (< 0.2)	4.8	
DDD	µg/kg	1.429 ±1.485 Non (0-2.950)	Non (< 0.4)	7.8	
DDE	µg/kg	0.725 ±0.505 Non (0-1.180)	Non (< 0.4)	374.0	
DDT	µg/kg	Non (< 0.008)	Non (< 0.4)	4.8	
Dieldrin	µg/kg	Non (< 0.004)	Non (< 0.2)	4.3	
Endrin	µg/kg	Non (< 0.004)	Non (< 1.0)	62.4	
Heptachlor epoxide	µg/kg	Non (< 0.016)	Non (< 0.2)	2.7	
Lindan	µg/kg	Non (< 0.200)	Non (< 0.4)	1.0	

Table 5 Content of heavy metals and organic plant protection chemicals in sediments of lagoon.

Non: not found.

exceeded the limit allowed under QCVN10-MT:2015/BTNMT (1,000 MPN/100 mL) and QCVN08-MT:2015/BTNMT (2,500-10,000 MPN/100 mL).

(4) Nitrite content (mean 0.09 mg/L) and phosphate (on average 1.54 mg/L) was higher than QCVN08-MT:2015/BTNMT (column A2).

The result in Table 5 showed the content of heavy metals and organic plant protection chemicals in sediments of lagoon. In the rainy season 2015, the content of metal Cu ranged from 8.80 mg/kg to 77.70 mg/kg dry soil. The content of metal Zn varied from 16.80 mg/kg to 132.80 mg/kg dry soil. Fe content varied from 8,185.20 mg/kg to 30,512.50 mg/kg dry land. The content of metal Pb varied from 4.26 mg/kg to 45.43 mg/kg dry soil. The content of metal Cd ranged from 0.02 mg/kg to 0.31 mg/kg dry soil through survey sites. The content of heavy metals was very low as compared to the limit allowed under QCVN38:2011/BTNMT.

In the rainy season 2015, As content ranged from 0.12 mg/kg to 0.41 mg/kg dry land; Cd ranged from 0.02 mg/kg to 0.31 mg/kg dry soil; Pb ranged from 1.70 mg/kg to 2.70 mg/kg dry land; Cu ranged in 19.00-0.20 mg/kg dry land. The content of these metals in bottom sediments was lower than the limit

allowed under QCVN38:2011/BTNMT.

The results of pesticide residue analyzes in the sediments shown in Table 5 indicated that the deposition of pesticides was not detected in most of samples in the dry season 2016. Chlordane, DDD and DDE were found in sediment samples in Thi Nai Lagoon in rainy season 2015 with 0.116 \pm 0.281, 1.429 \pm 1.485 and 0.725 \pm 0.505 µg/kg, respectively. These values are within the allowable limits of QCVN38:2011/BTNMT.

Therefore, the water environment in Thi Nai Lagoon has no pollution by heavy metals and pesticides.

4. Conclusions

Research shows that in the Thi Nai Lagoon, there are potential aquatic resources with 106 species of fish, 17 species of mollusks and 15 species of crustaceans. Some potential aquaculture species include: *Therapon jarbua*, *Mugil cephalus*, *Mulgil kelaartii*, *Cynoglossus puncticeps*, *Caranx carangus*, *Arothron immaculatus*, *Siganus oramin*, *Meretrix meretrix*, *Meretrix lyrata*, *Penaeus monodon*, *Ranina ranina*, earth shrimps, blue crabs and blue crabs, etc..

The monitoring results show that the water quality in Thi Nai Lagoon is suitable for aquaculture, with no pollution by heavy metals and pesticides. However, in the rainy season, there are signs of mild organic pollution.

References

- [1] UNEP. 2008. "Rehabilitation of Habitats and Sustainable Use of Fisheries Resources in the Con Chim Area, Thi Nai Lagoon." UNEP/GEF Project: Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand, Thi Nai Lagoon Demonstration Site, Binh Dinh Province, Viet Nam.
- [2] Vinh, T. V., and Hong, H. H. 2012. "Current Status of Capture Fisheries and Threats to Fisheries Resources and Aquatic Habitat in Thinai Lagoon, Binhdinh Province." *Journal of Fisheries Science and Technology* 1: 184-8. (in Vietnamese)
- [3] Linh, N. Q. 2009. Community-Based Management and Safe Aquaculture Development. Huế: Hue University Publishing House.
- [4] Thuan, N. V. 1999. The Status of the Provincial Environment in 1999—The Plan to Thoroughly Handle Production and Business Establishments Causing Serious Environmental Pollution. Binh Dinh Center for Environmental Technology Application and ENTEC Environmental Technology Center, Ho Chi Minh City.
- [5] Thuy, N. T. T. 2010. To Study the Scientific Basis to Develop Solutions for Sustainable Aquaculture Development in Thi Nai Lagoon, Binh Dinh Province. National Level Research Topic, Ministry of Science and Technology in Vietnam, 2008-2010.

- [6] Vietnam People's Committee of Binh Dinh Province. 2015. Planning on the Exploitation and Protection of Fisheries Resources in Binh Dinh Province by 2020 with a Vision to 2030.
- [7] Khang, V. D. 1963. *Taxonomy Fishery*, translated by Mao, N. B. Hanoi: Rural Publishing House.
- [8] Phu, T. Q. 2015. Curriculum for Fish Classification II. Càn Tho: Can Tho University Publishing House.
- [9] Dinh, T. D., Koichi, S., Phuong, N. T., Hung, H. P., Loi, T. X., Hieu, M. V., and Kenzo, U. 2013. *Fish Identification in the Mekong Delta, Vietnam*, Can Tho: Can Tho University Publishing House.
- [10] Ministry of Natural Resources and Environment in Vietnam. 2015. QCVN 08-MT:2015/BTNMT: National Technical Regulation on Surface Water Quality.
- [11] Ministry of Natural Resources and Environment in Vietnam. 2015. QCVN38:2011/BTNMT: National Technical Regulation on Surface Water Quality for Protection of Aquatic Lives.
- [12] Ministry of Natural Resources and Environment in Vietnam. 2015. QCVN 10-MT:2015/BTNMT: National Technical Regulation on Marine Water Quality.
- [13] Ministry of Agriculture and Rural Development in Vietnam 2014. QCVN02-19:2014/BNN&PTNT: National Technical Regulation on Brackish Water Shrimp Culture Farm—Conditions for Veterinary Hygiene, Environmental Protection and Food Safety.
- [14] Cat, L. V., Nhung, D. T. H., and Cat, N. N. 2006. Water for Aquaculture, Quality and Quality Improvement. Hanoi, Vietnam: Science and Technology Publishing House.